Konfigurasi Muatan Elementer pada Konduktor Persegi dengan Pendekatan Mekanika, Dinamika Listrik, dan Teori Elektromagnetik Matematika
DOI:
https://doi.org/10.61132/jupenkifb.v1i4.560Keywords:
Charge Configuration, Computer Simulation, Electric Charge, Electrodynamics, Square ConductorAbstract
A conductor, as a material that allows the easy flow of electric charge, plays a crucial role in various electrical and electronic applications. Understanding how elementary charges, particularly electrons, configure and move within a conductor, especially one with a square shape, is essential for analyzing and designing efficient electrical devices. This article discusses the configuration of elementary charges in a square conductor through simulations using a mechanics and electrodynamics approach, focusing on the interactions between charges to achieve a stable configuration. The simulation is conducted by placing charges randomly around the square conductor. The electro-dynamic interactions between charges cause them to arrange themselves in the most stable positions, where each charge interacts to minimize the system's energy. Although a stable configuration is achieved, fluctuations in the total system energy are still observed, approximately 1.33×10⁻³⁵ Joules. These fluctuations indicate that, despite stability, the system continues to experience dynamics that affect the overall energy. Particles at the corners of the conductor move faster than those on other sides, contributing significantly to the measured energy fluctuations. This charge configuration forms an electric field profile in the shape of a square, with the field being concentric, moving from the inside out of the conductor. This indicates that the electric field distribution is more concentrated inside and gradually decreases toward the outside. Furthermore, the distribution of particles on each side of the conductor is not uniform. There are deviations up to 4% from the expected distribution, and these fluctuations occur within a range of ±1 particle. This phenomenon provides deeper insights into the behavior of charges in a square conductor. Understanding this is important for designing electrical and electronic systems. Although the conductor reaches stability, the energy fluctuations that occur still play a role in optimizing electronic devices. The approach combining mechanics and electrodynamics is very useful for understanding the interactions between charges and electric fields, which can be applied to modern electrical technology.
References
Dachlan, H. S., Dhofir, M., & Fernanda, V. (2012). Pengaruh sudut keruncingan dan diameter finial Franklin terhadap distribusi medan listrik dan tingkat tegangan tembus. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems), 2(1), 1-10.
Edminister, J. A. (1984). Theory and problems of electromagnetics (Schaum Series). (Murjono, Trans.) Jakarta: Penerbit Erlangga.
Fadlillah, E. F., Hikmaturokhman, A., & Goran, P. K. (2024). Desain antena microstrip MIMO 2x2 dengan defected ground structure (DGS) untuk implementasi teknologi 5G pada frekuensi 26 GHz. Jurnal Riset Rekayasa Elektro, 6(2), 133-144.
Ginting, Y. T., Napitupulu, J., & Pane, A. G. (2021). Simulasi tegangan induksi kabel akibat arus petir pada kawat penangkal petir. Jurnal Teknologi Energi UDA: Jurnal Teknik Elektro, 9(2), 115-122.
Google. (n.d.). Overview of Colaboratory features. colab.research.google. Retrieved October 27, 2023, from https://colab.research.google.com/notebooks/basic_features_overview.ipynb?hl=id
Griffiths, D. (2023). Introduction to electrodynamics. Cambridge: Cambridge University Press.
Halliday, D., Resnick, R., & Walker, J. (2011). Fundamentals of physics. Hoboken: John Wiley & Sons, Inc.
Herawati, Y. (2014). Pengaruh ketebalan lapisan I pada perhitungan karakteristik arus-tegangan sel surya tipe PIN menggunakan metode elemen hingga. Jember: Skripsi tidak diterbitkan.
Ilmi, U. (2019). Studi persamaan regresi linear untuk penyelesaian persoalan daya listrik. Jurnal Teknika, 11(1), 1083-1087.
Martin, R. D., Neary, E., Rinaldo, J., & Woodman, O. (n.d.). Electric field and potential at the surface of a conductor. Libretexts Physics. Retrieved December 28, 2024, from https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/18%3A_Electric_potential/18.04%3A_Electric_field_and_potential_at_the_surface_of_a_conductor
Nurhakim, A. A., Rasyid, R. I., & Waluya, W. (2021). Simulasi berbasis MEH untuk pemodelan distribusi potensial listrik dan medan listrik pada isolator porselen 20 kV. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 6(2), 132-143.
orang.udik, & sjahroel. (2015, Mei). Model Drude pada logam. (orang.udik & sjahroel, Eds.) Retrieved Januari 6, 2025, from Material Science: Explore the world with science: https://material-sciences.blogspot.com/2015/05/model-drude-pada-logam.html
Saris, H. B., Hermawan, H., & Syakur, A. (2012, December). Simulasi distribusi tegangan dan medan listrik pada isolator suspensi 20 kV 3 sirip dengan 4 tipe ukuran sirip. Transient: Jurnal Ilmiah Teknik Elektro, 1(4), 218-225.
Wahid, S. N. (2024, March). Simulasi distribusi muatan diskrit pada kawat konduktor persegi. Jurnal Qua Teknika, 14(1), 107-115.
Wikipedia. (2023, April 27). Medan listrik. MediaWiki. Retrieved Desember 13, 2024, from https://id.wikipedia.org/wiki/Medan_listrik#
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Pendidikan Kimia, Fisika dan Biologi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.