Tinjauan Ilmiah terhadap Sel Punca Dewasa: Peran Terapeutik, Keamanan, dan Aplikasinya dalam Penyakit Degeneratif

Authors

  • Novita Trianah Universitas Indraprasta PGRI
  • Saptiawati Saptiawati Universitas Indraprasta PGRI
  • Ceni Liswati Universitas Indraprasta PGRI
  • Rina Hidayati Pratiwi Universitas Indraprasta PGRI

DOI:

https://doi.org/10.61132/jucapenbi.v2i3.565

Keywords:

stem cells, therapy, therapeutic, mesenchymal

Abstract

Stem cells are unspecialized cells with the ability to self-renew over long periods of time without undergoing significant changes in their basic properties. The discovery of adult stem cells has revolutionized therapeutic and regenerative medicine and led to the development of new therapies for previously untreatable terminal conditions. Hematopoietic stem cell transplantation was the first example of successful stem cell therapy and has been widely used in the treatment of a variety of diseases, including leukemia, adult T-cell lymphoma, and multiple myeloma. Meanwhile, autologous mesenchymal stem cell transplantation is increasingly being used to repair mesenchymal tissues and other organs such as the lung and heart, and has shown promise in the treatment of stroke, multiple sclerosis, and diabetes. Interest in the therapeutic potential of other adult stem cells including neural, mammary, intestinal, inner ear, and testicular stem cells is also growing. The discovery of induced pluripotent stem cells has opened new insights into the epigenetic mechanisms underlying pluripotency and carcinogenesis. This study employed a qualitative approach with a literature review method, aiming to conduct an in-depth review of the scientific literature related to the development of stem cell therapy and its epigenetic implications. Through a systematic analysis of various academic sources, this study seeks to formulate a comprehensive conceptual understanding and identify future directions for safer and more targeted stem cell therapy development.

References

Ades, L., Guardiola, P., & Socie, G. (2002). Second malignancies after allogeneic hematopoietic stem cell transplantation: New insight and current problems. Blood Reviews, 16, 135–146.

Aharonowiz, M., Einstein, O., Fainstein, N., et al. (2008). Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE, 3(9), e3145.

Ahmed, A. I., Zaben, M., & Gray, W. P. (2011). Stem cells in the adult human brain. British Journal of Neurosurgery, 25(1), 28–37. https://doi.org/10.3109/02688697.2010.525264

Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6, e1000029.

Ando, W., Tateishi, K., Katakai, D., et al. (2008). In vitro generation of a scaffold free tissue engineered construct (TEC) derived from human synovial mesenchymal stem cells: Biological and mechanical properties and further chondrogenic potential. Tissue Engineering Part A, 14(12), 2041–2049.

Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.

Attal, M., Lauwers-Cances, V., Marit, G., et al. (2012). Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. The New England Journal of Medicine, 366(19), 1782–1791.

Bae, D., Mondragon-Teran, P., Hernandez, D., et al. (2012). Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells. Stem Cells and Development, 21(8), 1344–1355.

Baiguera, S., Jungebluth, P., Burns, A., et al. (2010). Tissue engineered human tracheas for in vivo implantation. Biomaterials, 31(34), 8931–8938.

Bar Nur, O., Russ, H. A., Efrat, S., & Benvenisty, N. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9(1), 17–23.

Barrett, R. M., & Wood, M. A. (2008). Beyond transcription factors: The role of chromatin modifying enzymes in regulating transcription required for memory. Learning & Memory, 15(7), 460–467.

Ben David, U., Benvenisty, N., & Mayshar, Y. (2010). Genetic instability in human induced pluripotent stem cells: Classification of causes and possible safeguards. Cell Cycle, 9(23), 4603–4604.

Ben David, U., Mayshar, Y., & Benvenisty, N. (2011). Large scale analysis reveals acquisition of lineage specific chromosomal aberrations in human adult stem cells. Cell Stem Cell, 9(2), 97–102.

Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67(19), 9142–9149.

Brinster, R. L., & Avarbock, M. R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11303–11307.

Brundin, L., Brismar, H., Danilov, A. I., Olsson, T., & Johansson, C. B. (2003). Neural stem cells: A potential source for remyelination in neuroinflammatory disease. Brain Pathology, 13(3), 322–328.

Burks, J. Y., et al. (2010). Mesenchymal stem cells overexpressing IFN β inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenvironment, 3(1), 83–95.

Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.

Centeno, C. J., Schultz, J. R., Cheever, M., et al. (2011). Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Current Stem Cell Research & Therapy, 6(4), 368–378.

Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749.

Chen, G., Hu, Y. R., Wan, H., et al. (2010). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells and Schwann cells. Chinese Medical Journal, 123(17), 2424–2431.

Chin, M. H., Mason, M. J., Xie, W., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.

Connick, P., Kolappan, M., Crawley, C., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open label phase 2a proof of concept study. The Lancet Neurology, 11(2), 150–156.

Coppes, R. P., Baumann, M., Krause, M., & Hill, R. P. (2020). [Title not provided]. Radioterapi & Onkologi Indonesia, 11(1), 24–31.

De Ugarte, D. A., Alfonso, Z., Zuk, P. A., et al. (2003). Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology Letters, 89(2–3), 267–270.

Dey, D., Saxena, M., Paranjape, A. N., et al. (2009). Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS ONE, 4(4), e5329.

Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noël, D., & Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10), 3837–3844.

Dobrinski, I. (2005). Germ cell transplantation and testis tissue xenografting in domestic animals. Animal Reproduction Science, 89(1–4), 137–145.

Dubois, S. G., Floyd, E. Z., Zvonic, S., et al. (2008). Isolation of human adipose derived stem cells from biopsies and liposuction specimens. Methods in Molecular Biology, 449, 69–79.

European Medicines Agency. (2005). Guideline on risk management systems for medical products for human use (EMEA/CHMP/96268/2005). http://www.ema.europa.eu

Feng, B., Ng, J. H., Heng, J. C. D., & Ng, H. H. (2009). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell, 4(4), 301–312.

Fermand, J. P., Ravaud, P., Chevret, S., et al. (1995). High-dose therapy and autologous blood stem cell transplantation in multiple myeloma: Preliminary results of a randomized trial involving 167 patients. Stem Cells, 13(Suppl. 2), 156–159.

Harrison, N. J. (2012). Genetic instability in neural stem cells: An inconvenient truth? The Journal of Clinical Investigation, 122(2), 484–486.

Herberts, C. A., Kwa, M. S. G., & Hermsen, H. P. H. (2011). Risk factors in the development of stem cell therapy (pp. 1–14). [Jenis publikasi atau sumber perlu ditambahkan, misalnya: Technical report, atau jurnal jika ada].

Hobley, G., McKelvie, J. C., Harmer, J. E., et al. (2012). Development of rationally designed DNA N6 adenine methyltransferase inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(9), 3079–3082.

Honaramooz, A., Behboodi, E., Megee, S. O., et al. (2003). Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biology of Reproduction, 69(4), 1260–1264.

Hu, R., Zuo, Y., Zuo, L., et al. (2011). KLF4 expression correlates with the degree of differentiation in colorectal cancer. Gut and Liver, 5(2), 154–159.

Huang, J. I., Kazmi, N., Durbhakula, M. M., Hering, T. M., Yoo, J. U., & Johnstone, B. (2005). Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: A patient-matched comparison. Journal of Orthopaedic Research, 23(6), 1383–1389.

Induced pluripotent stem cells (iPSC): Meaning, function and significance. (2016). Jagran Josh. https://www.jagranjosh.com/generalknowledge/induced-pluripotent-stem-cells-ipsc-1550750764-1

Ishida, T., Hishizawa, M., Kato, K., et al. (in press). Allogeneic hematopoietic stem cell transplantation for adult T cell leukemia lymphoma with special emphasis on preconditioning regimen: A nationwide retrospective study. Blood.

Jakubowiak, A. J., Griffith, K. A., Reece, D. E., et al. (2011). Lenalidomide, bortezomib, pegylated liposomal doxorubicin, and dexamethasone in newly diagnosed multiple myeloma: A phase 1/2 Multiple Myeloma Research Consortium trial. Blood, 118(3), 535–543.

Janin, A., Murata, H., Leboeuf, C., et al. (2009). Donor-derived oral squamous cell carcinoma after allogeneic bone marrow transplantation. Blood, 113(8), 1834–1840.

Jiang, R., Han, Z., Zhuo, G., et al. (2011). Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: A pilot study. Frontiers of Medicine, 5(1), 94–100.

Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96(1), 25–34.

Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.

Kim, K., Doi, A., Wen, B., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290.

Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.

Koyama, N., Okubo, Y., Nakao, K., et al. (2011). Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sciences, 89(19–20), 741–747.

Krizhanovsky, V., & Lowe, S. W. (2009). Stem cells: The promises and perils of p53. Nature, 460(7259), 1085–1086.

Lee, J. S., Hong, J. M., Moon, G. J., Lee, P. H., Ahn, Y. H., & Bang, O. Y. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 28(6), 1099–1106.

Leis, O., Eguiara, A., Lopez Arribillaga, E., et al. (2012). Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene, 31(11), 1354–1365.

Li, H. C., Soticov, C., Rogers, A. B., & Houghton, J. M. (2006). Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers. World Journal of Gastroenterology, 12(3), 363–371.

Li, H., Liu, H., & Heller, S. (2003). Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 9(10), 1293–1299.

Lister, R., Pelizzola, M., Kida, Y. S., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73.

Lokhorst, H. M., Sonneveld, P., Cornelissen, J. J., et al. (1999). Induction therapy with vincristine, adriamycin, dexamethasone (VAD) and intermediate-dose melphalan (IDM) followed by autologous or allogeneic stem cell transplantation in newly diagnosed multiple myeloma. Bone Marrow Transplantation, 23(4), 317–322.

Macchiarini, P., Jungebluth, P., Go, T., et al. (2008). Clinical transplantation of a tissue engineered airway. The Lancet, 372(9655), 2023–2030.

Martin, M. J., Muotri, A., Gage, F., & Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 11, 228–232.

McCarthy, P. L., Owzar, K., Hofmeister, C. C., et al. (2012). Lenalidomide after stem cell transplantation for multiple myeloma. The New England Journal of Medicine, 366(19), 1770–1781.

Meza-Zepeda, L. A., Noer, A., Dahl, J. A., et al. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12(2), 553–563.

Miyamoto, T., Muneta, T., Tabuchi, T., et al. (2010). Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase related genes in nucleus pulposus cells in rabbits. Arthritis Research & Therapy, 12(6), R206.

Müller-Sieburg, C. E., Cho, R. H., Thoman, M., Adkins, B., & Sieburg, H. B. (2002). Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood, 100(4), 1302–1309.

Nakajima, H., Fukazawa, K., Wakabayashi, Y., et al. (2012). Withania somnifera extract attenuates stem cell factor-stimulated pigmentation in human epidermal equivalents through interruption of ERK phosphorylation within melanocytes. Journal of Natural Medicines, 66(3), 435–446.

Nakatsuji, N., Nakajima, F., & Tokunaga, K. (2008). HLA haplotype banking and iPS cells. Nature Biotechnology, 26, 739–740.

Nasef, A., Ashammakhi, N., & Fouillard, L. (2008). Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regenerative Medicine, 3, 531–546.

National Institutes of Health. (2006). Embryonic stem cells. https://stemcells.nih.gov/info/Regenerative_Medicine/2006Chapter1.htm

Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.

Neri, M., Ricca, A., di Girolamo, I., et al. (2011). Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells, 29(10), 1559–1571.

Neumann, J., Bahr, F., Horst, D., et al. (2011). SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer, 11, 518.

Neurotherapy, M., & Hospital, M. G. (2013). Therapeutic efficacy and fate of bimodal engineered stem cells [Abstract]. Journal of..., 1706–1714.

Newman, A. M., & Cooper, J. B. (2010). Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell, 7(2), 258–262.

Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A. I., Ware, C. B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H., & Murry, C. E. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21(6), 1345–1357.

Onder, T. T., Kara, N., Cherry, A., et al. (2012). Chromatin modifying enzymes as modulators of reprogramming. Nature, 483(7391), 598–602.

Pak, J. (2011). Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: A case series. Journal of Medical Case Reports, 5, 296.

Pandya, A. Y., Talley, L. I., Frost, A. R., et al. (2004). Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clinical Cancer Research, 10(8), 2709–2719.

Pevsner Fischer, M., Levin, S., & Zipori, D. (2011). The origins of mesenchymal stromal cell heterogeneity. Stem Cell Reviews and Reports, 7(3), 560–568.

Pluchino, S., Quattrini, A., Brambilla, E., et al. (2003). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422(6933), 688–694.

Pluchino, S., Zanotti, L., Rossi, B., et al. (2005). Neurosphere derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 436(7048), 266–271.

Portnow, J., Synold, T. W., Badie, B., Tirughana, R., Lacey, S. F., Apuzzo, M. D., et al. (2017). Neural stem cells–based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clinical Cancer Research, 23(??), 2951–2961.

Posner, I., Engel, M., Gazit, A., & Levitzki, A. (1994). Kinetics of inhibition by tyrphostins of the tyrosine kinase activity of the epidermal growth factor receptor and analysis by a new computer program. Molecular Pharmacology, 45(4), 673–683.

Prokhorova, T. A., Harkness, L. M., Frandsen, U., Ditzel, N., Schrøder, H. D., Burns, J. S., & Kassem, M. (2009). Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells and Development, 18(1), 47–54.

Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305.

Rodriguez, J., Sheets, K. T., & Hingtgen, S. D. (2016). Neural stem cells therapy for cancer. Methods, 99, 37–43.

Rossi, L., Challen, G. A., Sirin, O., et al. (2011). Hematopoietic stem cell characterization and isolation. In Methods in Molecular Biology (Vol. 750, Part 2, pp. 47–59). Humana Press.

Saha, B., Jaber, M., & Gaillard, A. (2012). Potentials of endogenous neural stem cells in cortical repair. Frontiers in Cellular Neuroscience, 6, 14.

Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis & Rheumatism, 52(8), 2521–2529.

Schreml, S., Babilas, P., Fruth, S., et al. (2009). Harvesting human adipose tissue derived adult stem cells: Resection versus liposuction. Cytotherapy, 11(7), 947–957.

Sekiya, I., Muneta, T., Koga, H., et al. (2011). Articular cartilage regeneration with synovial mesenchymal stem cells. Clinical Calcium, 21(6), 879–889.

Shah, K. (2012). Mesenchymal stem cells engineered for cancer therapy. Advanced Drug Delivery Reviews, 64(8), 739–748. https://doi.org/10.1016/j.addr.2011.06.010

Shih, C. C., Forman, S. J., Chu, P., & Slovak, M. (2007). Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells and Development, 16(6), 893–902.

Shihabuddin, L. S., & Cheng, S. H. (2011). Neural stem cell transplantation as a therapeutic approach for treating lysosomal storage diseases. Neurotherapeutics, 8(4), 659–667.

Shirasaka, T., Ukai, W., Yoshinaga, T., et al. (2011). Promising therapy of neural stem cell transplantation for FASD model—Neural network reconstruction and behavior recovery. Nihon Arukoru Yakubutsu Igakkai Zasshi, 46(6), 576–584.

Siatskas, C., Payne, N. L., Short, M. A., et al. (2010). A consensus statement addressing mesenchymal stem cell transplantation for multiple sclerosis: It’s time! Stem Cell Reviews and Reports, 6(4), 500–506.

Sng, J., & Lufkin, T. (2012). Emerging stem cell therapies: Treatment, safety, and biology. Stem Cells International, 2012, Article ID 521343. https://doi.org/10.1155/2012/521343

Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic β cells into induced pluripotent stem cells. Current Biology, 18(12), 890–894.

Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997.

Stuckey, D. W. (2014). Stem cell–based therapies for cancer treatment: Separating hope from hype. Nature Reviews Cancer, 14(?), 1–10.

Sundin, M., Örvell, C., Rasmusson, I., Sundberg, B., Ringdén, O., & Le Blanc, K. (2006). Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplantation, 37, 1051–1059.

Tan, J., Wu, W., Xu, X., et al. (2012). Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: A randomized controlled trial. JAMA, 307(11), 1169–1177.

Tesio, M., Golan, K., Corso, S., et al. (2011). Enhanced c Met activity promotes G CSF induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 117(2), 419–428.

Thomas, E. D., Lochte, H. L., Lu, W. C., & Ferrebee, J. W. (1957). Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. The New England Journal of Medicine, 257(11), 491–496.

Varma, H. S., Dadarya, B., & Vidyarthi, A. (2010). The new avenues in the management of osteoarthritis of knee—stem cells. Journal of the Indian Medical Association, 108(9), 583–585.

Wakitani, S., Nawata, M., Tensho, K., Okabe, T., Machida, H., & Ohgushi, H. (2007). Repair of articular cartilage defects in the patello femoral joint with autologous bone marrow mesenchymal cell transplantation: Three case reports involving nine defects in five knees. Journal of Tissue Engineering and Regenerative Medicine, 1(1), 74–79.

Wakitani, S., Okabe, T., Horibe, S., et al. (2011). Safety of autologous bone marrow derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 5(2), 146–150.

Ware, C. B., Wang, L., Mecham, B. H., et al. (2009). Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell, 4(4), 359–369.

Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.

Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754. https://doi.org/10.1038/aps.2013.50

Werbowetski Ogilvie, T. E., Bosse, M., Stewart, M., Schnerch, A., Ramos Mejia, V., Rouleau, A., Wynder, T., Smith, M. J., Dingwall, S., Carter, T., et al. (2009). Characterization of human embryonic stem cells with features of neoplastic progression. Nature Biotechnology, 27(1), 91–97.

Wijaya, H. M., & Gondhowiardjo, S. A. (2020). Perkembangan terapi sel punca pada kanker solid. Radioterapi & Onkologi Indonesia, 11(1), 24–31. https://doi.org/10.32532/jori.v11i1.111

Xiao, J., Mu, J., Liu, T., & Xu, H. (2017). Dig the root of cancer: targeting cancer stem cells therapy [Review]. Journal of Medical Discovery, (April), 1–??.

Yang, J., Song, T., Wu, P., et al. (2012). Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Molecular Medicine Reports, 5(1), 108–113.

Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5(3), 237–241.

Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

Zhang, C. L., Huang, T., Wu, B. L., He, W. X., & Liu, D. (2017). Stem cells in cancer therapy: Opportunities and challenges. Oncotarget, 8(43), 75756–75766.

Zhang, Y., Khan, D., Delling, J., et al. (2012). Mechanisms underlying the osteo and adipo differentiation of human mesenchymal stem cells. The Scientific World Journal, 2012, Article 793823.

Downloads

Published

2025-07-15

How to Cite

Novita Trianah, Saptiawati Saptiawati, Ceni Liswati, & Rina Hidayati Pratiwi. (2025). Tinjauan Ilmiah terhadap Sel Punca Dewasa: Peran Terapeutik, Keamanan, dan Aplikasinya dalam Penyakit Degeneratif. Jurnal Cakrawala Pendidikan Dan Biologi, 2(3), 72–94. https://doi.org/10.61132/jucapenbi.v2i3.565

Similar Articles

You may also start an advanced similarity search for this article.